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Hard Decisions Shape the Neural Coding of Preferences
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Hard decisions between equally valued alternatives can result in preference changes, meaning that subsequent valuations for chosen
items increase and decrease for rejected items. Previous research suggests that this phenomenon is a consequence of cognitive dissonance
reduction after the decision, induced by the mismatch between initial preferences and decision outcomes. In contrast, this functional
magnetic resonance imaging and eye-tracking study with male and female human participants found that preferences are already
updated online during the process of decision-making. Preference changes were predicted from activity in left dorsolateral prefrontal
cortex and precuneus while making hard decisions. Fixation durations during this phase predicted both choice outcomes and subsequent
preference changes. These preference adjustments became behaviorally relevant only for choices that were remembered and were in turn
associated with hippocampus activity. Our results suggest that preferences evolve dynamically as decisions arise, potentially as a mech-

anism to prevent stalemate situations in underdetermined decision scenarios.

Key words: choice-induced preference change; decision-making; fMRI; precuneus; preference formation; prefrontal cortex

(s

ignificance Statement

Most theories of decision-making assume that we always choose the best option available, based on a set of stable preferences.
However, what happens for hard decisions when the available options are preferred equally? We show that in such stalemate
situations, decision-makers adjust their preferences dynamically during the process of decision-making, and these preference
adjustments are predicted by a left prefrontal-parietal network. We also show that eye movements during decision-making are
predictive of the magnitude of the upcoming value change. Our results suggest that preferences are dynamic, adjusted every time
a hard decision is made, prompting a re-evaluation of existing frameworks of decision-making.
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Introduction

Traditional neurocognitive models of value-based choice view
decision-making as a serial process in which stable preferences
are the basis of subsequent choices (Dolan and Dayan, 2013).
However, there are situations in which choice options appear
equally valuable to the decision-maker, and therefore existing
preferences are not sufficient to rank alternatives. In Jean Buri-
dan’s philosophical parable, a hungry donkey is placed between
two bales of hay. As alternatives appear equally appealing, the
donkey is unable to decide and eventually starves to death. This
parable illustrates that there are hard decisions in which existing
preferences are not sufficient to identify a preferred option. In-
stead, preferences might need to be reconstructed dynamically as
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hard decisions arise if we do not want to end up like Burdian’s
starving donkey.

Indeed, substantial evidence suggests that preferences are not
rigid, but evolve dynamically and are dependent on the decision
context (Lichtenstein and Slovic, 2006). One highly debated
question is whether the act of choosing among equally valued
alternatives (henceforth hard decisions) itself shapes preferences.
The choice-induced preference change effect refers to the phe-
nomenon that after having made a hard choice, the chosen
option is preferred more while the alternative is preferred less
(Izumaand Murayama, 2013). Prominent explanations are based
on Festinger’s (1957) theory of cognitive dissonance, which pro-
poses that discrepancies between actions and preferences cause
psychological discomfort. Preferences are then adjusted after a
hard decision has been made to reduce the dissonance between
initial preference and the decision outcome (for review, see
Harmon-Jones et al., 2015). This explanation is in line with neu-
roimaging studies, which suggested that at the time of re-
evaluation, after dissonance between preferences and choices is
detected by the anterior cingulate cortex (ACC; van Veen et al.,
2009; Kitayama et al., 2013), the dorsolateral prefrontal cortex
(dIPFC) triggers changes in the neural representation of value
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memory task.

(Izuma et al., 2010, 2015; Mengarelli et al., 2015) in the ventro-
medial PFC (vmPFC) or ventral striatum (vStr; Izuma et al.,
2010; Chammat et al., 2017).

An alternative possibility is that preferences are adjusted
much earlier, that is, while a hard decision is made, when the
value differential of the options is not sufficient to choose among
them. As such, preference adjustments might constitute a neces-
sary adaptive (online) mechanism to deal with hard choices, as
opposed to a post-decisional process for eliminating cognitive
dissonance (Izuma et al., 2010, 2015). This new hypothesis, how-
ever, remains largely untested as existing functional neuroimag-
ing studies (using methodological improvements of the original
paradigm; Chen and Risen, 2010) focused entirely on the neural
mechanisms of preference change during re-evaluation (Izuma et
al., 2010; Chammat et al., 2017).

Here we tested this hypothesis using the incentive-compatible
free choice paradigm (Voigt etal., 2017) while functional magnetic
resonance imaging (fMRI) was conducted and eye movements
were recorded. We hypothesized that the blood oxygen level-
dependent (BOLD) signal in the dIPFC would predict subsequent
preference changes during the process of making hard decisions.
Other recent studies suggested that post-decisional preference
changes only occur when choices are explicitly remembered (Salti
et al., 2014), which was associated with hippocampus activity
(Chammat et al., 2017). These authors speculate that there could
be a causal relationship between episodic memory for previous
choices and subsequent changes of preferences. We therefore also
predicted similar effects for preference changes during decision-
making. Additionally, we hypothesized that fixation durations
play a significant role in solving hard decisions. Support for this
conjecture stems from studies demonstrating that visual fixations
causally relate to value-based choices: options that are looked at
for longer are more likely to be chosen (Krajbich et al., 2010) and
experimental manipulations of exposure duration bias prefer-
ences toward the longer presented option (Shimojo et al., 2003).
These findings indicate that future values of choice options might
be reconstructed by information gathered “in the moment” via
fixations.

Materials and Methods

Participants

Thirty male and female human participants were recruited via advertise-
ments at the University of Melbourne. An initial screening interview
assured that these participants (1) enjoyed eating snack foods; (2) fre-
quently consumed snack foods; (3) were not on a calorie-, sugar-, or
fat-reducing diet; (4) were familiar with local supermarket brands; and
(5) had no food allergies. To increase the salience of the experimental
stimuli, all participants were asked to refrain from eating or drinking
(except for water) for 4 h before the study (Schonberg et al., 2014; Voigt
et al., 2017). Eight participants were excluded from the behavioral and
fMRI analyses: five participants arrived too late to finish fMRI data ac-
quisition, for two participants there were technical issues with the track
ball used for valuation indication, and one participant revealed only after
the experiment that she did not like snack foods and was currently diet-
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The incentivized free-choice task consisted of four consecutive phases: valuation phase 1, decision phase 1, valuation phase 2, decision phase 2. This task was followed by a choice

ing. The final sample of 22 participants (13 females; aged between 18 and
37 years; M = 23.57, SD = 4.93) were right-handed (assessed via the
Edinburgh handedness inventory; Oldfield, 1971) English speakers with
normal or corrected-to-normal vision. An additional screening interview
assessing the participants’ suitability for MRI revealed that no participant
had significant health problems (including neurological and psychiatric
disorders) or was on psychoactive medication affecting cognitive func-
tion or cerebral blood flow. Participants were naive to the purpose of the
study, gave written consent before participating, and were reimbursed
AUDG0 for their time. The study was approved by the University of
Melbourne Human Research Ethics Committee (1442440).

Experimental task and procedures

The experiment consisted of two main consecutive tasks: the incentive-
compatible free choice task (Voigt et al., 2017) followed by a choice memory
task. The first task consisted of four task phases: valuation phase 1, deci-
sion phase 1, valuation phase 2, and decision phase 2 (Fig. 1). Neuroim-
aging data were acquired during the decision phases and the second
valuation phase. Eye-tracking data were acquired during the first deci-
sion phase.

The incentivized free-choice task

Valuation phase 1. Each trial (292 total trials) started with a central fixa-
tion cross (jittered between 1 and 3 s), which was followed by a pseudo-
randomly selected snack food stimulus (1 s; for further details about
these stimuli, see Voigt et al., 2017). Subsequently, participants indicated
how much they were willing to pay for that item on a continuum from $0
to $4. Responses were measured by moving a graphical slider along a
continuous valuation scale. All responses were made via a MRI-compatible
fiber optic trackball and were restricted to 3 s.

Decision phase 1. A maximum of 80 “hard” and 40 “easy” choice pairs
were created, based on the responses of the valuation phase 1, by pairing
either items with highly similar (hard) valuations or dissimilar (easy)
valuations, respectively (Table 1). Half of the hard and easy choice pairs
(60 total trials) were shown in a pseudorandomized order, requiring
participants to make binary (two-alternative forced-choice; 2AFC) deci-
sions for the item they preferred. Trials were presented in two separate
runs (i.e., 30 trials per run) to allow for a short break. Each trial started
with a short fixation period (jittered between 4 and 9 s), followed by a
snack food pair. Critically, it was emphasized that only the item they
chose could feature in a subsequent Becker-DeGroot Marshak (BDM
auction; Becker et al., 1964). In the BDM auction participants had the
chance of buying one of the chosen items, and their willingness to pay
(WTP) would serve as the bids from their pre-allocated budget of $4. As
such, bids and decisions were incentivized and consequential (Voigt et
al., 2017). The response window was 3 s after which the selected choice
was highlighted by a black frame for 1 s.

Valuation phase 2. This task phase was identical to the valuation phase
1. Participants were instructed that the purpose was not to probe their
memory of the first valuation, but to provide another, independent
valuation.

Decision phase 2. This task phase was identical to the first decision
phase with the only difference that the remaining, unused 60 choice pairs
were presented (Table 1). This allowed us to use the first and second
valuations for these items as a control sequence (VVC), assessing changes
in valuation that were attributable to methodological artifact pointed out
by Chen and Risen (2010).
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Table 1. Descriptive statistics of choice trials in the 2AFC task stages

First 2AFC Second 2AFC

Average Mean Average Mean Paired-samples

number SD_,n difference SD_ g number SD_n difference SD_ng ttest p
Difficult? 38.69 3.92 0.003 0.01 39.07 4.13 0.003 0.02 tiz9) = —0.77 0.88
Easy’ 19.64 1.44 2.26 1.05 19.60 0.97 2.29 1.04 tgg = —0.78 0.88

This table represents the descriptive statistics after choice trial deletion. Average number, Mean number of choice trials across participants; Mean difference, average valuation difference of items within each choice pair across participants;

SD_,,, SD for the average number of choice trials; SD_,, SD for mean of valuation difference of items within a choice pair.
“Choice trials that contained pairs with a valuation differential of >1SD of the individual's mean valuation differential were not considered for further analysis.
®Choice trials that contained pairs with a valuation differential of <1 SD of the individual's mean valuation differential were not considered for further analysis.
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ROIs. A, The vmPFCand vSTR ROIs were used in GLM1 (based on Bartra et al., 2013, their Fig. 6 A and Table 1). B, The hippocampus ROl was used for GLM 3, GLM 4, and GLM 5. ROI mask

in the left hippocampus was created based on Chammat et al. (2017) by using a sphere with 10 mm radius around their reported peak voxel activation (MNI: —14, — 12, —24) in combination with
anatomical para- and hippocampal masks from the AAL atlas to ensure that all voxels within the created sphere were within the hippocampal formation. C, The precuneus, bilateral dIPFC and

hippocampus ROIs were used in GLM 5.

The choice memory task

This task was completed outside the MRI scanner. In 292 trials, partici-
pants were sequentially presented with all snack foods again. They indi-
cated whether they remembered having previously chosen or rejected it.
Critically, participants were asked to distinguish whether they were
absolutely certain (options: Chose! or Rejected!; trials labeled “remem-
bered”), or whether they felt that they were guessing (Chose? and Re-
jected?; trials labeled “guessed”) their response. In addition, participants
could also indicate that they believed that the item did not feature in the
experiment (i.e., No option! or No option?). If participants selected these
options, these trials were coded as falsely remembered or falsely guessed.
Participants were unaware of the subsequent memory task throughout
the fMRI experiment; that is, they were not explicitly instructed to mem-
orize their choices.

Data acquisition and analyses

Linear mixed modeling of behavioral data

Choice-induced preference change effects were assessed via linear mixed
effects modeling using the Ime4 package (Bates et al., 2015) in R. In the
first model, the effects of Condition (coded: VVC = 0; VCV = 1), Mem-
ory (coded: 0 = not remembered, remembered = 1), Guessing (coded:
0 = not guessed, guessed = 1) and the resulting two-way and three-way
interactions were regressed on the spread of alternatives, following pro-
cedures of previous studies (Chammat et al., 2017). A second linear
mixed-effect model aimed to address whether the effect of choice was
bidirectional. For this, we added an additional predictor variable to the
originally model, i.e., Choice (coded: rejection = 0; selection = 1) and
modeled the (mean-corrected) WTP Change Scores as a function of
Choice, Condition, Memory, and Guessing (all variables were coded as
mentioned above). In both models, Participants and Stimuli were spec-
ified as random intercepts to control for the variance associated with
these factors without data aggregation. As choice-induced preference
change effects can only be expected for hard decisions (Chen and Risen,
2010; Izuma et al., 2010; Salti et al., 2014; Voigt et al., 2017), the key
analyses are reported for hard decision trials only. The final model was
established by comparing the full model to alternative models in which
model parameters were successively eliminated (“backward elimina-
tion”). Model comparison and selection were based on the Bayesian

information criterion and log-likelihood ratio testing. The Satterthwaite
degrees-of-freedom approximation was used to calculate p values.

fMRI data acquisition preprocessing and analysis

Whole-brain MRI data were acquired using a Siemens MAGNETOM 3T
scanner with a 20-channel head coil (38 axial slices; time of repetition,
TR = 2200 ms; echo time, TE = 30 ms, resolution 3 X 3 X 3 mm?). Data
acquisition during the two 2AFC phases comprised of 174 volumes per
two runs and 338 volumes per four runs for the valuation phase. Volumes
were acquired using a single-shot gradient-echo echoplanar imaging se-
quence. A high-resolution T1-weighted magnetization-prepared rapid
gradient echo covering the whole brain was acquired (TR = 1900 ms;
TE = 2.49 ms; T1 = 900 ms; flip angle = 9° 192 slices; field-of-view =
240 mm) for each participant. Task-free fMRI data were also acquired
before participants performing the task-based fMRI section (results will
be reported in a separate publication). The fMRI data were preprocessed
using SPM12 (Wellcome Centre for Human Neuroimaging, UCL, UK)
software implemented in MATLAB 2014b (MathWorks). Preprocessing
included slice time correction, realignment to the individual’s mean
functional image, coregistration, segmentation, and normalization as
well as spatial smoothing (Gaussian kernel’s full-width at half-maximum
was 8 mm).

GLM 1I: neural representation of WTP value. To identify brain activity
associated with monetary value, we constructed a GLM for the second
valuation stage. Results were assessed within regions-of-interests (ROIs)
which have been shown to encode stimulus values (Bartra et al., 2013;
Fig. 2). This contained two regressors of interests: (1) an onset regressor
for the presentation of food stimuli (2) and a parametric regressor for
participants’ WTP response (ranging from $0 to $4) for that food
stimulus:

BOLDValuationZ = b[) + StimulusOnsel + WTPValue te

GLM 2: neural correlates of hard decisions. GLM 2 was designed to
establish where in the brain choice difficulty was represented during the
crucial first decision phase. The model included two main regressors-of-
interest: (1) onset for hard decisions and (2) onset of easy decisions:

BOLDDecisionl+2 = bO + 2AFCOnsetHard + 2AFCOnsetEasy te
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GLM 3 and 4: memory-depended choice-induced preference changes ef-
fects in second valuation phase. Following the logic of the behavioral re-
sults, and replicating the exact approach by Chammat et al. (2017), we
regressed the interaction effect between experimental condition and cor-
rectly remembered choices, which constitutes the hallmark of the pref-
erence changes induced by choice, on BOLD signals from the second
valuation task stage. To this end, for GLM 3 we sorted trials into four
conditions: (1) remembered items in the VCV condition, (2) forgotten
items in the VCV condition, (3) remembered items in the VVC condi-
tion, and (4) forgotten items in the VCV condition. We regressed the
main effect of condition, the main effect of correctly remembered choice
outcomes, and the interaction between condition and correctly remem-
bered choice outcomes using a flexible factorial model in the hippocam-
pus ROI (Fig. 2):

BOLDy,yation2 = by + Condition + Remembered + Condition

X Remembered + e.

GLM 4 explored the possibility of preference changes for correctly
guessed trials. We constructed a similar model as for GLM 3, but with
guessed trials only.

BOLDy,yation2 = by + Condition + Guessed

+ Condition X Guessed + e.

GLM 5: choice-induced preference change effects during hard choices.
Finally, we investigated whether the a priori defined ROI in the dIPFC
predicted preference changes on a trial-by-trial basis for hard decisions.
For this GLM, we went beyond the model suggested by (Chammat et al.
(2017) that only considered the spread of alternatives. To truly capture
the choice-induced preference change effect, the WTP valuation change
scores (WCS) were entered as a parametric predictor for hard decisions
items into the model. WCS were computed by subtracting an item’s first
WTP score from its second WTP score. Mean-corrected WTP values
were used for this subtraction to eliminate any variability in scores that
are not attributable to the experimental manipulations. Mean-corrected
WTP values were obtained by subtracting the average bid for the respec-
tive participant’s session from the raw score of each single trial (x; —
mean;,n; Sharot et al., 2009; Salti et al., 2014; Voigt et al., 2017). Easy
trials, for which no preference changes were observed and expected, were
modeled as additional regressors-of-no-interest:

BOLDValuationichange = b(} + DeczﬂonOnsetHard

+ WCSiyarq + Decisiongpsepasy + €.

For all GLMs, regressors were convolved with a canonical hemodynamic
response and together with the motion parameters from the realignment
procedure regressed against the BOLD signal in each voxel. Regressors-
of-interest were modeled as independent between levels.

For group-level comparisons, the parameter estimates resulting from
the first-level analyses were entered into flexible factorial designs, or
repeated measures regressions, depending on the analysis. Appropriate
linear contrasts were generated to identify regions associated with the
parameter of interest. Results for ROIs were assessed via small volume
correction [extent threshold familywise error (FWE), p < .05; height
threshold p,,corr < 0.001]. For whole-brain analyses correction for mul-
tiple comparisons (extend threshold FWE, p < 0.05; height threshold,
Puncorr < 0.001) was performed at cluster level.

Left and right dIPFC ROIs were 10 mm spheres (k = 155) around peak
voxel activation associated with preference-changes at the stage of second
valuation (i.e., post-choice) reported by Izuma et al. (2010, their Table
SI3). Precuneus and hippocampus ROIs were 10 mm spheres (k = 155)
around peak voxel activation associated with the Condition X Remem-
bered (see Fig. 5D) and Condition X Guess (see Fig. 5E) interaction
effects observed post-choice in our free-choice paradigm. Note that the
hippocampus ROI was again masked with the anatomical para- and hip-
pocampal mask form the automatic anatomical labeling (AAL) atlas. All
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other ROIs contained voxels of the signified region of >90% and there-
fore additional masking was not necessary.

Eye-tracking acquisition and analysis

Eye movements were recorded for the right eye for the first choice task
stage via an MR-compatible infrared video-based system measuring cor-
neal reflection (Eyelink 1000) at 500 Hz. To assess whether fixation pa-
rameters predicted choice, a GLM was conducted. The fixation duration
ratio, first and last fixation count of the chosen item were regressed on
choice outcome. To determine whether fixation duration predicted up-
dated preferences, we conducted another GLM and regressed the fixation
differential (i.e., the mean difference between the fixation duration of
chosen and rejected items) and the initial WTP values of the chosen item
on the chosen item’s WTP values from the second evaluation phase. For
this GLM, we analyzed the data from 1000 ms poststimulus presentation
onward, as previous research reported value-formation at this stage
(Harris et al., 2011). Analyses were conducted in MATLAB and R.

Results

Behavioral results

First, we established the degree of preference changes after indi-
viduals made hard choices and their relation to memory of
previous choice outcomes. We found that individuals took sig-
nificantly longer to decide between equally valued alternatives
(hard decisions; M = 1.65 s, SD = 0.27 s) than between items that
were distinct in their values (easy choices; M = 1.41 s, SD =
0.24 s; t(5;) = —6.25, p < 0.001). Participants correctly remem-
bered 32.63% (SD = 9.41%) and correctly guessed 25.81% (SD =
2.40%) of the choice outcomes of their hard choices (difference
1.5, t51) = 1.71,p > 0.10). The interaction between experimental
condition (i.e., VCV, VVC) and choice memory is considered
diagnostic of a memory-dependent choice-induced preference
change effect (Salti et al., 2014; Chammat et al., 2017) such that
only correctly remembered items should show preference
changes, but not guessed or not remembered items. In a linear
mixed effect (LME) model analyses, this interaction showed the
hypothesized post-choice spread in valuations for items that were
correctly remembered (Condition X Memory interaction effect:
B =0.38,SE = 0.16, p < 0.02) but not for correctly guessed items
(Condition X Guessing interaction effect: 8 = —0.06, SE = 0.09,
p = 0.53. Replicating our previous behavioral results (Voigt et al.,
2017), this interaction effect was bidirectional, i.e., WTP in-
creased for correctly remembered chosen items (3 = 0.26, SE =
0.10, p < 0.05), and decreased for correctly remembered rejected
items (8 = —0.17, SE = 0.08, p < 0.05; Fig. 3; Table 2). Replicat-
ing previous findings (Sharot et al., 2009; Izuma et al., 2010; Voigt
et al., 2017), the choice-induced preference change effect was
absent for easy choices (Choice X Condition X Remembered
interaction effect: B = 0.12, SE = 0.17, p > 0.05; Choice X
Condition X Guess interaction effect: B = 0.15, SE = 0.19,
p > 0.05).

Neuroimaging results for control analyses

Neural representation of monetary value

We next verified that our WTP procedure engaged the “valuation
network”, which relates to the encoding of subjective (monetary)
value, i.e., preferences (Dolan and Dayan, 2013). To this end, we
regressed participants’ trial-by-trial WTP scores against BOLD
responses during the second valuation phase (GLM1) from ROIs
(Fig. 4A) in vmPFC and vStr (Bartra et al., 2013). We found a
significant parametric modulation in both the vmPFC (MNI: 3,
50, —4;z = 4.77; psv pwe < 0.001) and vStr (MNI1: 12,11, —1;z =
3.59; pey pwr = 0.036; Fig. 4).



722 - ). Neurosci., January 23,2019 - 39(4):718 -726

Voigt et al. ® Hard Decisions Shape Preferences

T T T T
03[ Chosen = Rejected i
0.2 7
0.1_ i i l |
ot ; i
®

)

G -01F .

L

@)

% 0.2} —
-0.3 1
0.4 .
_05 s -
06 I VCV ]

[
 NAYe "
1 1 1 L
Not Remembered Not Remembered
Remembered Remembered

Figure 3.

Behavioral results revealed memory-dependent, bidirectional choice-induced preference changes. For chosen/rejected remembered items, the change in WTP values was significantly

higher/lower in the VCV condition as opposed to the VVC control condition. This effect did not reach significance for guessed choices. *p<< 0.05.

Table 2. Choice-induced preference change effect for hard decisions

Full model Final model
(Intercept) —0.26%** (0.04) —0.30%** (0.04)
Choice 0.38%** (0.06) 0.40%** (0.04)
Condition —0.04 (0.05) —0.01(0.04)
Remembered —0.10 (0.06) —0.06 (0.05)
Guess —0.10 (0.06)
Choice X Condition —0.00 (0.08) —0.00 (0.06)
Choice X Remembered 0.10 (0.08) 0.07 (0.07)
Condition X Remembered —0.14(0.08) —0.17* (0.08)
Choice X Guess 0.07 (0.09)
Choice X Condition X Remembered 0.26* (0.12) 0.26* (0.10)
Choice X Condition X Guess —0.00(0.12)
AIC 7557.29 7538.23
BIC 7649.48 7605.84
Log likelihood —3763.65 —3758.11

AIC, Akaike information criterion; BIC, Bayesian information criterion. The baseline condition is Rejected, VVC,
Remembered Wrong, Guess Wrong. Conditions are treatment coded. ***p << 0.001, *p << 0.05.

Neural correlates of hard choices

We then confirmed that hard choices activated decision-related
brain regions to a greater extent than easy choices (GLM2), sug-
gesting decision conflict. A whole-brain analysis showed that ac-
tivity in the left dorsal ACC [MNI: —6, 26, 4; extent threshold
Psv.rwe = 0.006 (puncorr. < 0.001, height threshold); z=4.21;k =

130] and left middle frontal gyrus [MFG; MNI: —45, 23, 26;
extent threshold pey pwr = 0.04 (Puncorr. < 0.001 height thresh-
old); z = 3.91; k = 79] was significantly higher for hard compared
with easy choices (Fig. 4B). These regions have previously been
related to decisions between equally valued options, approach
conflicts, and choice anxiety (van Veen et al., 2009; Kitayama et
al., 2013; Shenhav and Buckner, 2014).

Preference changes following hard decisions

Neuroimaging results

Next, we investigated the neural correlates of the memory-
depended choice-induced preference changes at the time of re-
evaluation. As a recent study (Chammat et al., 2017) provided
initial evidence that this effect is associated with left hippocampus
activity, we used their results to construct a ROI. Consistent with
our behavioral results, the predicted critical interaction between
experimental condition and remembered choice outcomes was
associated with changes in left hippocampus activity (MNI: —24,
—28, —16; psy pwr = 0.012; F = 12.56, z = 3.18; Fig. 5D). An
additional whole-brain analysis confirmed that no other brain
regions showed this effect. Although the interaction between cor-
rectly guessed choice outcomes and experimental condition did
not show any change in preference at the behavioral level, signif-
icant effects for correctly guessed items were found at the whole-
brain level in one cluster within left posterior parietal cortex,
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including the precuneus [MNI: —6, —55, 32; extent threshold
Psviwe = 0.01 (Puncorr. < 0.001 height threshold); z = 4.61; k =
133; Fig. 5E], but not in the hippocampus.

Preference changes during hard decisions

Neuroimaging results

Our crucial analyses involved testing whether preference changes
were already present at a neural level during the process of mak-
ing hard decisions, and whether these effects were moderated by
memory processes, as suggested by our behavioral results. Previ-
ous studies suggested that the dIPFC (Izuma et al., 2010, 2015),
particularly the left (Harmon-Jones et al., 2015; Mengarelli et al.,
2015), is directly involved in post-decisional preference changes.
We therefore regressed trial-by-trial preference change scores for
each of the hard choices as a parametric regressor against the
BOLD data obtained during the first decision phase (GLM 5)
from predefined ROIs in the left and right dIFPC (Fig. 5C; Izuma
et al., 2010). Our analysis showed that activity in the left dIPFC
was predictive of subsequent preference changes for the later re-
membered items (MNIL: —24, 5, 47; psy pwe = 0.01, z = 3.61).
The same contrast in right dIPFC ROI marginally missed the

significance threshold (MNI: 33, 20, 30; pgy pwe = 0.07, z =
2.80).

As we found choice-induced preference changes to be en-
coded in hippocampus (remembered) and precuneus (guessed)
for the second valuation phase, we further repeated the above
analysis (GLM 5) for the decision phase using these areas as ROIs.
This analysis showed that the precuneus (MNI: —15, —58, 29;
z = 3.59; psv pwe = 0.008), but not hippocampus (MNI: —27,
—28, —19; z = 2.03; pgy pwe = 0.48) encoded the preference
changes at the time of decision-making (Fig. 5C).

To assess whether the effects were specific to the choice task
stage in which choice can shape preferences (i.e., VCV), we re-
peated the analyses using the data obtained during second choice
task stage (i.e., VVC). We did not find any significant results for
any of the ROIs, indicating that the results were unique neural
correlates of preference changes induced by choice and not arti-
facts because of regression to the mean.

Eye tracking results
Our neuroimaging results do not address the question whether
preferences changed as a consequence of choice, or alternatively,
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whether they changed during the decision-making process. To
answer this question, we analyzed fixation data during the
decision-making process (in the same phase 1) while participants
were exposed to both options on the screen preceding their
response.

Decision outcomes. The total fixation duration for chosen
items (M = 693.59 ms, SD = 253.34 ms) was significantly higher
than for rejected items (M = 634.65 ms, SD = 232.80 ms; ¢, =
3.48, p = 0.004; d = 0.89). Similarly, the fixation duration ratio
for chosen items (M = 0.44, SD = 0.15) was significantly higher
than the fixation duration ratio for rejected items (M = 0.40,
SD = 0.14; t(,4, = 2.89,p = 0.003; d = 1.06; Fig. 5A). The fixation
duration ratio was computed by dividing the fixation duration
for the chosen item (or rejected item, respectively) by the total
fixation duration (for both the chosen and rejected item). A lin-
ear regression model showed that the probability of choosing an
item was determined by its fixation duration ratio (8 = 0.07,
SE = 0.03, p < 0.05), but also by whether it was looked at first
(B=0.28,SE = 0.14, p < 0.05) and last (8 = 0.37, SE = 0.14,p <
0.01). Both the accuracies with which choices could be predicted
from the total fixation duration (M = 0.56, SD = 0.08) and the
duration of the first fixation (M = 0.57, SD = 0.09) were signif-
icantly higher than chance (total fixation duration: t,,, = 2.91,
p = 0.01; d = 0.75; first fixation duration: t,,,) = 2.94, p = 0.01;
d = 0.76). Fixation duration of the last fixation, however, did not
predict choice outcomes (M = 0.52, SD = 0.1 t;4, = 0.72, p =
0.48; Fig. 5A).

Preference changes. Next, we examined whether fixation dura-
tions also predicted subsequent changes in valuation for hard
choices during the first decision phase. A LME model showed
that the fixation duration differential (i.e., the mean difference
between the fixation duration of chosen and rejected items) pre-
dicted the subsequent, updated WTP value for the chosen item
(B =5.55,SE = 1.96, p < 0.001, one-tailed), with higher fixation
rates being linked to higher updated values, as early as 1000 ms
after stimulus presentation. This finding also held when control-
ling for the initial WTP values (8 = 2.49, SE = 1.55, p < 0.05,
one-tailed; Fig. 5B). The analysis revealed no interaction effect
with item memory.

Discussion
Preference changes following hard choices have been interpreted
as a result of cognitive dissonance reduction after decisions have
been made and preferences are re-assessed (Festinger, 1957). As
such, previous fMRI studies of preference changes induced by
hard choices solely focused on neural correlates of preference
changes during the re-evaluation of alternatives (Izuma et al.,
2010; Chammat et al., 2017). Our study is the first to reveal that
preference changes were linked with neural activity much earlier,
i.e., during the process of making hard decisions. Specifically,
activation in a brain network comprising left dIPFC and precu-
neus was predictive of upcoming preference changes effects. Fur-
ther, we found that fixation durations predicted choices as well as
future valuations. Although our findings do not rule out the
contribution of cognitive dissonance reduction after decision-
making, our results clearly point to the involvement of a pro-
foundly different mechanism of preference change in which
preferences are adjusted online in the early stages of the decision
process while decision-makers are deciding among equally val-
ued alternatives.

Our behavioral results confirmed that for equally valued,
consumable items, the valuations increased after choosing and
decreased after rejecting when valuations were measured by
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incentive-compatible WTP assessments (Voigt et al., 2017). Con-
sistent with other earlier reports (Salti et al., 2014; Chammat et
al., 2017) we confirmed that preferences changed only for choices
that were explicitly remembered later. Our memory test explicitly
addressed the possibility that participants did not actually re-
member which choices they made earlier, but simply inferred
(i.e., guessed) them based on their updated preferences. By asking
participants to label their choice outcomes as remembered or
guessed we could show that explicit choice memory, but not
correct guessing, was linked to behavioral choice-induced pref-
erence change effects, fully in line with Chammat et al. (2017).
We further replicated findings by Chammat et al. (2017) that
memory-depended choice-induced preference changes were as-
sociated with left hippocampus activity, a core region involved in
long-term episodic memory (Bird and Burgess, 2008), during the
revaluation phase. In our study, the same neural correlates of the
spread of alternatives was only found for remembered items. In
addition, while preference changes were absent at the behavioral
level for correct guesses, a significant neural effect for spread of
alternatives in this condition could nevertheless be observed in
the precuneus. This region has been associated with the rapid
formation and retrieval of episodic memory (Brodt et al., 2016),
with self-relevant processing (Kircher et al., 2002) and with deci-
sions based on guessing (Bode et al., 2013). The precuneus might
therefore be involved in less certain retrieval processes for items,
which only lead to smaller, behaviorally subthreshold choice-
induced preference change effects.

Previous explanations for the observed spread of alternatives
following hard choices (Izuma et al., 2010; Salti et al., 2014;
Chammat et al., 2017) were in accord with prominent theories
that valuations are adjusted post hoc to match previous choices
(e.g., cognitive dissonance theory, Festinger, 1957; self-perception
theory, Bem, 1967). However, the temporal dynamics of choice-
induced preference changes were never explicitly tested. Some
other studies attempted to investigate whether preference change
during the initial decision phase (Jarcho et al., 2011; Kitayama et
al,, 2013; Colosio et al., 2017) but remained inconclusive as they
did not distinguish decision conflict from preference change (Co-
losio et al., 2017), did not control for potential methodological
artifacts (cf., Chen and Risen, 2010), or used noisy, incentive-
incompatible preference assessments, which might be ill-suited to
investigate choice-induced preference changes (cf., Voigt et al.,
2017). Our study accounted for these methodological issues and
clearly showed that trial-by-trial preference changes were already
reflected in the dIPFC during the decision process. The left dIPFC
has been shown previously to be involved in the implementation
of preference change after hard choices were made (Izuma et al,,
2010; Mengarelli et al., 2015). Here, we extended these findings in
showing that this area was involved much earlier. In addition, we
tested whether the memory-related regions, which were found to
reflect the spread of alternatives (as conceptualized by Chammat
et al., 2017) in our study in the revaluation phase also tracked
changes in preferences during decision-making. Interestingly,
such effects were absent in the hippocampi but present in the
precuneus.

Together, our fMRI results suggest a process in which first, a
decision conflict among equally valued alternatives is detected,
based on subjective values of the choice alternatives. In line with
this, monetary values were associated with activity in vmPFC and
vStr in our study (cf., Bartra et al., 2013), whereas decision con-
flict was reflected in enhanced activity in the ACC and MFG (cf,,
Botvinick, 2007; Shenhav and Buckner, 2014). The detection of
decision conflict could then trigger an updating process for stim-



Voigt et al. ® Hard Decisions Shape Preferences

ulus values during decision formation, possibly to resolve the
initial conflict and to avoid similar near-stalemate situations in
the future. This idea is consistent with a revised version of cogni-
tive dissonance theory (Harmon-Jones et al., 2015), which states
that a decision conflict needs to be resolved first to enable the
individual to prepare a choice plan. This process could therefore
involve the dIPFC, which is strongly related to decision-making
and working memory (Yan et al., 2016) as well as the precuneus,
which might be more involved in the initial formation of episodic
memory and potentially driving self-referential decision pro-
cesses via allocation of attention (Kircher et al., 2002; Brodt et al.,
2016). Shifts in spatial attention related to precuneus activity
during decision formation could then feed into the reconstruc-
tion of new value information in the dIPFC, which in turn could
store the new value representation in working memory, assisting
the optimal decision between the options. This is in line with
demonstrations that value reconstruction evolves from posterior
parietal to dorsolateral prefrontal regions (Harris et al., 2011).
Consequently, during subsequent revaluation, stronger changes
in preference, and also stronger memory-related signals, would
be found for the same items, which is what we and others (Salti et al.,
2014; Chammat et al., 2017) observed. These authors suggested that
the function of memory for choice-induced preference change ef-
fects might be based on a metacognitive mechanism regulating the
coherence between our previous remembered decisions and cur-
rent beliefs, values and behaviors at revaluation. Our finding of
preference change prediction during choice appears partly at
odds with this account and rather suggests an immediate, auto-
matic and unconscious updating process. Differences in familiar-
ity (Dubé et al., 2013), or fluctuations in attention (Chun and
Turk-Browne, 2007) between items could be related to both pref-
erence update during choice as well as encoding strength. Hence,
it is possible that the same metacognitive mechanism proposed
by Chammat et al. (2017) already unconsciously operates during
choice, consolidating stronger memory traces for updated items
that are then consciously accessible during revaluation. Other
items, labeled as “forgotten” later, might only receive small up-
dates which are negligible or remain undetected. In consequence,
preference updating processes during and post-choice might co-
exist, but their interplay with memory functions requires further
research.

It has to be noted, however, that ultimately the role of dIPFC
(and of the other brain regions reported here) in preparing pref-
erence changes during choice cannot be fully resolved. It remains
possible that other processes, strongly correlated with computing
updated preferences, drove the activation profile in dIPFC during
the decision phase. Given the current literature, however, the
suggested model constitutes a reasonable assumption.

To investigate whether preferences were indeed reconstructed
during decision formation for hard decisions, we also analyzed
fixations via eye tracking. Previous studies postulated a causal
link between visual fixations and the formation of subjective val-
ues and value-based choice (Shimojo et al., 2003; Krajbich et al.,
2010). According to these studies, the allocation of spatial atten-
tion might lead to an increase in information accumulation in
favor for the fixated object and, in turn, a higher likelihood of this
object to be chosen. In accordance with these reports, we found
that fixation duration of the first fixation and total fixation dura-
tion predicted choices. As such, a proportion of these signals
could potentially reflect residual preference differences between
choice options. However, beyond choice itself, fixations also pre-
dicted changes in future values for chosen items. This analysis
could not explicitly take into account methodological artifacts
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pointed out by Chen and Risen (2010), but given that we dem-
onstrated clear choice-induced preference change effects after
controlling for such effects for the same items, this strongly sug-
gests that our findings did indeed reflect preference adjustments
during hard decision, supporting the neural findings for the de-
cision phase. These adjustment processes potentially also drive
the encoding of choice options in episodic memory, meaning that
subsequent choice memory might not reflect random variations
in retrieval strength, but systematic differences in encoding strength
during decision formation.

The formation of decisions and preferences

Our results cannot unambiguously disentangle which processes
contribute to making the decision versus adjusting preferences.
As early fixations predicted choices, it is possible that these fixa-
tions reflect allocation of attention, potentially acting as a “sym-
metry breaker” when confronted with equally valuable options.
This could be driven by the precuneus, which has been related to
choices under indifference (Bode et al., 2013; Soon et al., 2013).
The precuneus also has major subcortical connections to the pre-
tectal area and the superior colliculus (Yeterian and Pandya,
1993; Leichnetz, 2001), which contribute to attentional shifts via
eye movement control (Moschovakis, 1996). However, early fix-
ations patterns must not necessarily be the result of random pro-
cesses, but could themselves be driven by exogenous stimulus
properties, such as its saliency (Itti and Koch, 2001), or residual
differences in subjective value, which were not adequately cap-
tured by our WTP measurements. Further, it is possible that for
the longer fixated item, more choice-attributes were considered,
leading to a choice-advantage and preference increase (Orquin
and Mueller Loose, 2013). Alternatively, the mere exposure effect
(Zajonc, 1968), which states that preferences increase as a func-
tion of exposure duration, might also be relevant here.

In conclusion, our findings indicate that theories that focus on
post-decisional factors cannot be the sole explanation of choice-
induced preference effects. Our results support a dynamic view of
preference formation during decision-making, enabling the indi-
vidual to make value-based choices. The overall preference
change could nevertheless result from a combination of adjust-
ment processes during and following choice, and the extent to
which each mechanism contributes to the effect remains an open
question. Future studies are also needed to explore what factors
underlie the early fixations, which predicted both choice and
updated preferences, and whether similar effects can be found in
choices other than value-based decisions.
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